
Summary of Lecture 4

• We learnt how to generate random images.

• We learnt about histogram matching which enabled us to “match”
the histogram of a given image to another image’s histogram.

• We learnt how to calculate the “inverses” of discrete functions.

• We learnt about quantization, simple uniform quantization and com-
panding.

– Calculating errors.

– MSQE.

– Choosing thresholds to minimize MSQE.
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Quantization

• tn ∈ {0, 1, . . . , 255} a sequence of thresholds (n = 0, . . . , P − 1).

• P “half-open, discrete intervals” Rn = [tn, tn+1)

(t0 = 0, tP = 256).

• rn ∈ Rn the reproduction level of the interval Rn.

• Quantizer:

Q(l) = {rk|l ∈ Rk, k = 0, . . . , P − 1} (1)

i.e., l ∈ Rk ⇔ Q(l) = rk.

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 2



Designing Good Quantizers

Q(l) = {rk|l ∈ Rk, k = 0, . . . , P − 1} (2)

MSQE =
255∑

l=0
(l −Q(l))2pA(l) (3)

Assuming P is fixed:

• Around ranges of l where pA(l) is large, a good quantizer should have
many small Rn, i.e., since we can have at most P discrete intervals, most of these intervals

should be around ranges of l where pA(l) is large.

• Equivalently, a good quantizer should not “waste” many reproduction
levels around ranges of l where pA(l) is small.
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Designing the Thresholds for Given Reproduction Levels

• Assume P and rn are given.

• For MSQE optimality

tn = round(
rn−1 + rn

2
) (4)

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 4



Designing the Reproduction Levels for Given Thresholds

• Assume P and tn are given.

• Consider Rn = [tn, tn+1).

• How can we choose rn ∈ Rn to minimize MSQE?

• Equation 3 can be written as:

MSQE =
255∑

l=0
(l −Q(l))2pA(l)

=
P−1∑

m=0

tm+1−1∑

l=tm

(l −Q(l))2pA(l)

=
P−1∑

m=0

tm+1−1∑

l=tm

(l − rm)2pA(l)

=
P−1∑

m=0,m 6=n

tm+1−1∑

l=tm

(l − rm)2pA(l) +
tn+1−1∑

l=tn

(l − rn)2pA(l)

• Choose rn to minimize:
tn+1−1∑

l=tn

(l − rn)2pA(l) (5)
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Designing the Reproduction Levels contd.

• Choose rn to minimize:
tn+1−1∑

l=tn

(l − rn)2pA(l)

• Taking the derivative with respect to rn and equating the result to 0

yields:

−
tn+1−1∑

l=tn

2(l − rn)pA(l) = 0

rn = round(
∑tn+1−1

l=tn lpA(l)
∑tn+1−1

k=tn pA(k)
) (6)
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MSQE Optimal Lloyd-Max Quantizer

Algorithm: Find the MSQE optimal quantizer in iterations v = 0, 1, . . .. Start
with v = 0 and a given set of reproduction levels r0

n. Let ε > 0 be a small

number.

1. v → v + 1.

2. Calculate MSQE optimal tvn via:

tvn = round(
rv−1
n−1 + rv−1

n

2
) (7)

3. Calculate MSQE optimal rv
n via:

rv
n = round(

∑tvn+1−1
l=tvn

lpA(l)
∑tvn+1−1

k=tvn
pA(k)

) (8)

4. Calculate MSQE via:

ev =
P−1∑

m=0

tvm+1−1∑

l=tvm

(l − rv
m)2pA(l) (9)

5. If ev−1 − ev < ε terminate (quantizer designed) else goto 1.
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Properties

• ev−1 − ev ≥ 0, the MSQE is non-increasing with v. The algorithm is guar-

anteed to converge.

• The MSQE optimal final quantizer satisfies the optimality conditions
for the thresholds and reproduction levels.

• The MSQE optimal final quantizer is locally optimal, i.e., the final quan-
tizer (and hence ev) depends on the initial r0

n that we started with.

• The final quantizer must be implemented in the general way as described
in Lecture 4.

• A good way to choose the r0
n is by making them the reproduction

levels of a companding quantizer.
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Example

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 9



Example - contd.
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Example - contd.
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Example - contd.
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Example - contd.
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Systems

• Image processing operations can be modeled by utilizing system the-
ory.

• For now assume A and B are general two-dimensional sequences.

• Consider A S⇒ B.

– S is a system which “converts” the input A into the output B.

– The output B depends on the input A, i.e., in general different
inputs may give rise to different outputs.

– The system S is characterized by its input-output relationship
(H):

B = H(A) (10)

We will also write:

B(m,n) = H(A(i, j)), m, n, i, j ∈ {−∞, . . . ,−1, 0, 1, . . . , +∞}
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Linear Systems

• Let a1 and a2 be constants.

• A linear system S is a system such that

H(a1A1 + a2A2) = a1H(A1) + a2H(A2) (11)

for all a1, a2, A1, A2.

• A large number of image processing/formation operations can be mod-

eled by linear systems.
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Linear Shift Invariant (LSI) Systems

• A shift invariant system S is a system such that if

B(m,n) = H(A(i, j))

then

B(m− i0, n− j0) = H(A(i− i0, j − j0)) (12)

for all A and i0, j0 ∈ {−∞, . . . ,−1, 0, 1, . . . , +∞}.
• A linear shift invariant (LSI) system S is a linear system that is also

shift invariant.

• Many image processing/formation operations can be modeled by linear
shift invariant systems.
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Impulse Representation of 2D Sequences/Images

A(i, j) =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)δ(i− k, j − l) (13)

where

δ(i, j) =





1, i = j = 0

0, otherwise
(14)

is the Kronecker delta function or discrete-time impulse function,
δ(i, j) = δ(i)δ(j).
(This is not to be confused with the Dirac delta function or continuous-time impulse function δ(x, y)).
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Impulse Response for LSI Systems and Convolution

Assume S is a linear shift invariant system with input-output relationship H.
Using Equation 13:

H(A(i, j)) = H(
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)δ(i− k, j − l))

=
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)H(δ(i− k, j − l)) (15)

Let h(i, j) = H(δ(i, j)) denote the impulse response of the system S. Then:

H(δ(i− k, j − l)) = h(i− k, j − l)

and we have:

H(A(i, j)) =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)h(i− k, j − l) (16)

which is called the convolution sum.

• This holds for all A, i.e., everything about the LSI system S is “in”
h(i, j).
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Convolution

B(i, j) =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)h(i− k, j − l)

We will also write B = A⊗ h.
Let k′ = i− k, l′ = j − l.

A⊗C =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)C(i− k, j − l)

=
+∞∑

k′=−∞

+∞∑

l′=−∞
A(i− k′, j − l′)C(k′, l′)

= C⊗A

In particular, δ ⊗ h = h⊗ δ = h and for all A:

A⊗ δ =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)δ(i− k, j − l)

= A (17)
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Convolution - contd.

• In practice we will be interested in the convolution of two dimensional
sequences of finite extent, for e.g.,

A(i, j)





6= 0, 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ M1 − 1

= 0 otherwise

B(i, j)





6= 0, 0 ≤ i ≤ N2 − 1, 0 ≤ j ≤ M2 − 1

= 0 otherwise

• Let A and B be as above.

A⊗B =
+∞∑

k=−∞

+∞∑
l=−∞

A(k, l)B(i− k, j − l)

=
N1−1∑

k=0

M1−1∑

l=0
A(k, l)B(i− k, j − l) (18)

Note that the above convolution sum includes the term
A(N1 − 1,M1 − 1)B(i− (N1 − 1), j − (M1 − 1)).

• Thus if C = A⊗B, A is N1×M1 and B is N2×M2, then C is in general
(N1 + N2 − 1)× (M1 + M2 − 1).
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Example I
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Convolution - contd.

Equation 18 can be further simplified in various ways so that sums of 0 are
avoided for implementation purposes.

• C = A⊗B. A (N1 ×M1) and B (N2 ×M2).
Suppose N2 << N1, M2 << N2 and let

xi =





i− (N2 − 1), i > N2 − 1

0, otherwise

yi =





N1 − 1, i > N1 − 1

i, otherwise

(Replace i with j, N with M to get xj, yj).

C(i, j) =
yi∑

k=xi

yj∑

l=xj

A(k, l)B(i− k, j − l) (19)

• Note that i = 0, . . . , N1 + N2 − 1− 1 and j = 0, . . . , M1 + M2 − 1− 1

for this special case of finite extent sequences.
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Example II
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Summary

• In this lecture we learnt how to pick the reproduction levels for the
given thresholds.

• We learnt how to design MSQE optimal quantizers.

• We reviewed linear systems, linear shift invariant systems and
the convolution sum.

• Please read pages 11-19 from the textbook.
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Homework V

1. Implement the Lloyd-Max quantizer for your image. Do everything I did between pages 9-13.

Show all results as well as your original image and its sample probability mass function.

2. Convolve the 2-d sequences with nonzero portions shown, i.e., obtain C = A ⊗ B. Show your

computations graphically for at least 5 different values of C similar to the earlier example.

A(i, j)=

j = 0 1 2

i = 0 0 4 4

1 −2 1 3

2 5 1 1

, B(i, j)=

j = 0 1 2

i = 0 −1 3 4

1 1 2 2

2 −3 2 6

3. Implement a convolution script in matlab taking note of the computational simplifications as

discussed. Convolve your image with itself. Normalize the result and show it as an image.

Comment on the result as well as the execution time. What is the dimension of the resulting

image? Now do the same using the conv2 command in matlab. Make sure the results of your

script and conv2 are the same. (You can do so by calculating an error image and summing its

absolute value. The result should be 0. Experiment with small images till you get it right.)

4. Let A(i, j) =

j = 0 1 2

i = 0 −1 0 1

1 −2 0 2

2 −1 0 1
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Convolve your image with A (your script). Take the absolute value of the result, normalize and

show. Comment on the result and the execution time. What is the size of the resulting image?

Now do the same with conv2 as above.
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